AULA 5: REDES DE COMPUTADORES ATIVIDADE 5: HARDWARE DE REDES
Para possibilitar a conexão entre os módulos processados (e.g. microcomputadores) de uma rede torna-se necessários equipamentos de conectividade, como adaptadores (placas) de redes, Hubs, comutadores (Switches), Pontes (Bridges), cabos, conectores, etc. Vejamos abaixo um texto que discorre sobre esse assunto e que foi criado por Carlos Morimoto. Algumas informações contidas no texto foram transformadas em hipertexto para maior esclarecimento do leitor. Placas de Rede A placa de rede é o hardware que permite aos micros conversarem entre sí através da rede. Sua função é controlar todo o envio e recebimento de dados através da rede. Cada arquitetura de rede exige um tipo específico de placa de rede; você jamais poderá usar uma placa de rede Token Ring em uma rede Ethernet, pois ela simplesmente não conseguirá comunicar-se com as demais. Além da arquitetura usada, as placas de rede à venda no mercado diferenciam-se também pela taxa de transmissão, cabos de rede suportados e barramento (ISA, PCI, etc) utilizado. Quanto à taxa de transmissão, temos placas Ethernet de 10 mbps e 100 mbps e placas Token Ring de 4 mbps e 16 mbps. Como vimos no trecho anterior, devemos utilizar cabos adequados à velocidade da placa de rede. Usando placas Ethernet de 10 mbps por exemplo, devemos utilizar cabos de par trançado de categoria 3 ou 5, ou então cabos coaxiais. Usando uma placas de 100 mbps o requisito mínimo a nível de cabeamento são cabos de par trançado blindados nível 5. No caso de redes Token Ring, os requisitos são cabos de par trançado categoria 2 (recomendável o uso de cabos categoria 3) para placas de rede de 4 Mbps, e cabos de par trançado blindado categoria 4 para placas de 16 mbps. Devido às exigência de uma topologia em estrela das redes Token Ring, nenhuma placa de rede Token Ring suporta o uso de cabos coaxiais. Cabos diferentes exigem encaixes diferentes na placa de rede. O mais comum em placas Ethernet, é a existência de dois encaixes, uma para cabos de par trançado e outro para cabos coaxiais. Muitas placas mais antigas, também trazem encaixes para cabos coaxiais do tipo grosso (10Base5), conector com um encaixe bastante parecido com o conector para joysticks da placa de som. Placas que trazem encaixes para mais de um tipo de cabo são chamadas placas combo. A existência de 2 ou 3 conectores serve apenas para assegurar a compatibilidade da placa com vários cabos de rede diferentes. Naturalmente, você só poderá utilizar um conector de cada vez.
Finalmente, as placas de rede diferenciam-se pelo barramento utilizado. Atualmente você encontrará no mercado placas de rede ISA e PCI usadas em computadores de mesa e placas PCMCIA, usadas em notebooks e handhelds. Existem também placas de rede USB que vem sendo cada vez mais utilizadas, apesar de ainda serem bastante raras devido ao preço salgado. Naturalmente, caso seu PC possua slots PCI, é recomendável comprar placas de rede PCI pois além de praticamente todas as placas PCI suportarem transmissão de dados a 100 mbps (todas as placas de rede ISA estão limitadas a 10 mbps devido à baixa velocidade permitida por este barramento), você poderá usá-las por muito mais tempo, já que o barramento ISA vem sendo cada vez menos usado em placas mãe mais modernas e deve gradualmente desaparecer das placas mãe novas. A nível de recursos do sistema, todas as placas de rede são parecidas: precisam de um endereço de IRQ, um canal de DMA e um endereço de I/O. Bastando configurar os recursos corretamente. O canal de IRQ é necessário para que a placa de rede possa chamar o processador quando tiver dados a entregar. O canal de DMA é usado para transferir os dados diretamente à memória, diminuindo a carga sobre o processador. Finalmente, o endereço de I/O informa ao sistema aonde estão as informações que devem ser movidas. Ao contrário dos endereços de IRQ e DMA que são escassos, existem muitos endereços de I/O e por isso a possibilidade de conflitos é bem menor, especialmente no caso de placas PnP. De qualquer forma, mudar o endereço de I/O usado pela placa de rede (isso pode ser feito através do gerenciador de dispositivos do Windows) é uma coisa a ser tentada caso a placa de rede misteriosamente não funcione, mesmo não havendo conflitos de IRQ e DMA. Todas as placas de rede atuais são PnP, tendo seus endereços configurados automaticamente pelo sistema. Placas mais antigas por sua vez, trazem jumpers ou DIP switches que permitem configurar os endereços a serem usados pela placa. Existem também casos de placas de rede de legado que são configuráveis via software, sendo sua configuração feita através de um programa fornecido junto com a placa. Para que as placas possam “se encontrar” dentro da rede, cada placa possui também um endereço de nó. Este endereço de 48 bits é único e estabelecido durante o processo de fabricação da placa, sendo inalterável. O endereço físico é relacionado com o endereço lógico do micro na rede. Se por exemplo na sua rede existe um outro micro chamado “Micro 2”, e o “Micro 1” precisa transmitir dados para ele, o sistema operacional de rede ordenará à placa de rede que transmita os dados ao “Micro 2”, porém, a placa usará o endereço de nó e não o endereço de fantasia “Micro 2” como endereço. Os dados trafegarão através da rede e será acessível a todas as os micros, porém, apenas a placa do “Micro 2” lerá os dados, pois apenas ela terá o endereço de nó indicado no pacote. Sempre existe a possibilidade de alterar o endereço de nó de uma placa de rede, substituindo o chip onde ele é gravado. Este recurso é usado algumas vezes para fazer espionagem, já que o endereço de nó da rede poderá ser alterado para o endereço de nó de outra placa da rede, fazendo com que a placa clonada, instalada no micro do espião também receba todos os dados endereçados ao outro micro. Hubs Numa rede com topologia de estrela, o Hub funciona como a peça central, que recebe os sinais transmitidos pelas estações e os retransmite para todas as demais. Existem dois tipos de hubs, os hubs passivos e os hubs ativos. Os hubs passivos limitam-se a funcionar como um espelho, refletindo os sinais recebidos para todas as estações a ele conectadas. Como ele apenas distribui o sinal, sem fazer qualquer tipo de amplificação, o comprimento total dos dois trechos de cabo entre um micro e outro, passando pelo hub, não pode exceder os 100 metros permitidos pelos cabos de par trançado. Um Hub ativo por sua vez, além de distribuir o sinal, serve como um repetidor, reconstituindo o sinal enfraquecido e retransmitindo-o. Enquanto usando um Hub passivo o sinal pode trafegar apenas 100 metros somados os dois trechos de cabos entre as estações, usando um hub ativo o sinal pode trafegar por 100 metros até o hub, e após ser retransmitido por ele trafegar mais 100 metros completos. Apesar de mais caro, este tipo de hub permite estender a rede por distâncias maiores.
Hubs InteligentesAlém dos hubs comuns, que apenas distribuem os sinais da rede para os demais micros conectados a ele, existe uma categoria especial de hubs, chamados de smart hubs, ou hubs inteligentes. Este tipo de hub incorpora um processador e softwares de diagnóstico, sendo capaz de detectar e se preciso desconectar da rede estações com problemas, evitando que uma estação faladora prejudique o tráfego ou mesmo derrube a rede inteira; detectar pontos de congestionamento na rede, fazendo o possível para normalizar o tráfego; detectar e impedir tentativas de invasão ou acesso não autorizado à rede e outros problemas em potencial entre outras funções, que variam de acordo com a sofisticação do Hub. O SuperStak II da 3Com por exemplo, traz um software que baseado em informações recebidas do hub, mostra um gráfico da rede, mostrando as estações que estão ou não funcionando, pontos de tráfego intenso etc. Usando um hub inteligente a manutenção da rede torna-se bem mais simples, pois o hub fará a maior parte do trabalho. Isto é especialmente necessário em redes médias e grandes.
SwitchsUm Hub simplesmente retransmite todos os dados que chegam para todas as estações conectadas a ele, como um espelho. Isso faz com que o barramento de dados disponível seja compartilhado entre todas as estações e que apenas uma possa transmitir de cada vez. Um switch também pode ser usado para interligar vários hubs, ou mesmo para interligar diretamente as estações, substituindo o hub. Mas, o switch é mais esperto, pois ao invés de simplesmente encaminhar os pacotes para todas as estações, encaminha apenas para o destinatário correto. Isto traz uma vantagem considerável em termos desempenho para redes congestionadas, além de permitir que, em casos de redes, onde são misturadas placas 10/10 e 10/100, as comunicações possam ser feitas na velocidade das placas envolvidas. Ou seja, quando duas placas 10/100 trocarem dados, a comunicação será feita a 100 megabits. Quando uma das placas de 10 megabits estiver envolvida, será feita a 10 megabits. Os switchs mais baratos, destinados a substituir os hubs são também chamados de hub-switchs. De maneira geral a função do switch é muito parecida com a de um bridge, com a excessão que um switch tem mais portas e um melhor desempenho. Usando bridges ou switches todos os segmentos interligados continuam fazendo parte da mesma rede. As vantagens são apenas a melhora no desempenho e a possibilidade de adicionar mais nós do que seria possível unindo os hubs diretamente. Os roteadores por sua vez são ainda mais avançados, pois permitem interligar várias redes diferentes, criando a comunicação, mas mantendo-as como redes distintas.
Conectando HubsA maioria dos hubs possuem apenas 8 portas, alguns permitem a conexão de mais micros, mas sempre existe um limite. E se este limite não for suficiente para conectar todos os micros de sua rede? Para quebrar esta limitação, existe a possibilidade de conectar dois ou mais hubs entre sí. Quase todos os hubs possuem uma porta chamada “Up Link” que se destina justamente a esta conexão. Basta ligar as portas Up Link de ambos os hubs, usando um cabo de rede normal para que os hubs passem a se enxergar. Como para toda a regra existe uma exceção, alguns hubs mais baratos não possuem a porta Up Link, mas nem tudo está perdido, lembra-se do cabo cross-over que serve para ligar diretamente dois micros sem usar um hub? Ele também serve para conectar dois hubs. A única diferença neste caso é que ao invés de usar as portas Up Link, usaremos duas portas comuns. Note que caso você esteja interligando hubs passivos, a distância total entre dois micros da rede, incluindo o trecho entre os hubs, não poderá ser maior que 100 metros, o que é bem pouco no caso de uma rede grande. Neste caso, seria mais recomendável usar hubs ativos, que amplificam o sinal. Repetidores Caso você precise unir dois hubs que estejam muito distantes, você poderá usar um repetidor. Se você tem, por exemplo, dois hubs distantes 150 metros um do outro, um repetidor estrategicamente colocado no meio do caminho servirá para viabilizar a comunicação entre eles.
Bridges (pontes)Imagine que em sua empresa existam duas redes; uma rede Ethernet, e outra rede Token Ring. Veja que apesar das duas redes possuírem arquiteturas diferentes e incompatíveis entre sí, é possível instalar nos PCs de ambas um protocolo comum, como o TCP/IP por exemplo. Com todos os micros de ambas as redes falando a mesma língua, resta apenas quebrar a barreira física das arquiteturas de rede diferentes, para que todos possam se comunicar. É justamente isso que um bridge faz. É possível interligar todo o tipo de redes usando bridges, mesmo que os micros sejam de arquiteturas diferentes, Macs de um lado e PCs do outro, por exemplo, contanto que todos os micros a serem conectados utilizem um protocolo comum. Antigamente este era um dilema difícil, mas atualmente isto pode ser resolvido usando o TCP/IP, que estudaremos à fundo mais adiante.
Como funcionam os Bridges?Imagine que você tenha duas redes, uma Ethernet e outra Token Ring, interligadas por um bridge. O bridge ficará entre as duas, escutando qualquer transmissão de dados que seja feita em qualquer uma das duas redes. Se um micro da rede A transmitir algo para outro micro da rede A, o bridge ao ler os endereços de fonte e destino no pacote, perceberá que o pacote se destina ao mesmo segmento da rede e simplesmente ignorará a transmissão, deixando que ela chegue ao destinatário através dos meios normais. Se, porém, um micro da rede A transmitir algo para o micro da rede B, o bridge detectará ao ler o pacote que o endereço destino pertence ao outro segmento, e encaminhará o pacote. Caso você tenha uma rede muito grande, que esteja tornando-se lenta devido ao tráfego intenso, você também pode utilizar um bridge para dividir a rede em duas, dividindo o tráfego pela metade. Figura 2: Comunicação entre duas redes usando bridge.
Roteadores (routers)Os bridges servem para conectar dois segmentos de rede distintos, transformando-os numa única rede. Os roteadores por sua vez, servem para interligar duas redes separadas. A diferença é que usando roteadores, é possível interligar um número enorme de redes diferentes, mesmo que situadas em países ou mesmo continentes diferentes. Note que cada rede possui seu próprio roteador e os vários roteadores são interligados entre sí. Os roteadores são mais espertos que os bridges, pois não lêem todos os pacotes que são transmitidos através da rede, mas apenas os pacotes que precisam ser roteados, ou seja, que destinam-se à outra rede. Por este motivo, não basta que todos os micros usem o mesmo protocolo, é preciso que o protocolo seja roteável. Apenas o TCP/IP e o IPX/SPX são roteáveis, ou seja, permitem que os pacotes sejam endereçados à outra rede. Portanto, esqueça o NetBEUI caso pretenda usar roteadores. Como vimos, é possível interligar inúmeras redes diferentes usando roteadores e não seria de se esperar que todos os roteadores tivessem acesso direto a todos os outros roteadores a que estivesse conectado. Pode ser que por exemplo, o roteador 4 esteja ligado apenas ao roteador 1, que esteja ligado ao roteador 2, que por sua vez seja ligado ao roteador 3, que esteja ligado aos roteadores 5 e 6. Se um micro da rede 1 precisar enviar dados para um dos micros da rede 6, então o pacote passará primeiro pelo roteador 2 sendo então encaminhado ao roteador 3 e então finalmente ao roteador 6. Cada vez que o dado é transmitido de um roteador para outro, temos um hop.
Os roteadores também são inteligentes o suficiente para determinar o melhor caminho a seguir. Inicialmente o roteador procurará o caminho com o menor número de hops: o caminho mais curto. Mas se por acaso perceber que um dos roteadores desta rota está ocupado demais, o que pode ser medido pelo tempo de resposta, então ele procurará caminhos alternativos para desviar deste roteador congestionado, mesmo que para isso o sinal tenha que passar por mais roteadores. No final, apesar do sinal ter percorrido o caminho mais longo, chegará mais rápido, pois não precisará ficar esperando na fila do roteador congestionado.
|